

VERIFY General Assembly

WP4 – Rona Thompson and all WP4 participants

May 9th -11th , 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

Overview of WP4

Overview of models and methods

Method/Model	Sources	Notable Inputs	
CAPRI Statistical model using emission factors	enteric fermentation (CH ₄)	crop areas, yield, livestock densities, nutrient inputs	
	manure management ($CH_4 + N_2O$)		
	direct + indirect emissions ($CH_4 + N_2O$)		
EDGAR Statistical model using emission factors	enteric fermentation (CH ₄)	crop areas, yield, livestock densities, nutrient inputs	
	manure management ($CH_4 + N_2O$)		
	direct + indirect emissions ($CH_4 + N_2O$)		
ECOSSE process-based land surface model	soil emissions (N ₂ O) (cropland, grassland, forests)	climate, land-use, nutrient inputs, & soil data	

CH₄ emission estimates

CAPRI estimates based on Farm Structure Units (FSUs) at ~10 km resolution using Tier 1 and 2 approaches. Emissions from enteric fermentation estimated using Tier 2 based on energy and nutrient requirements and feed. CH_4 emission estimates biannual 2000-2018.

Bottom-up: agriculture

N₂O emissions estimates

CAPRI estimates based on Farm Structure Units (FSUs) at ~10 km resolution using Tier 1 and 2 approaches. N₂O emission estimates biannual 2000-2018.

ECOSSE model revised to include new N-fertilizer data and moved from monthly to daily time steps. Simulations made for wheat crops but will be expanded to other crops.

CH₄ emission estimates from EDGAR-v6

EU27+UK plurality of emissions from agriculture, 48%, next most important is waste, 28%, then energy, 20%

VERIFY GA meeting | May 9th -11th , 2022 | Paris

N_2O emission estimates from EDGAR-v6

Emissions decreased by 31% from 1970 to 2018, mostly in the industrial sector

EU27+UK plurality of emissions from agriculture, 69%, next most important is chemicals industry (other) 15%

Bottom-up: wetlands

New models estimates using JSBACH-HIMMELI

- European estimates at daily and 0.1° resolution covering the period 2000-2020
- Global estimates for 2005-2019 at 1.875° resolution and monthly:
 - Peat = 22 Tg/y
 - Mineral soil = 129 Tg/y
 - Soil uptake = 56 Tg/y

Evaluation of JSBACH-HIMMELI CH₄ fluxes

- Comparison to in-situ flux measurements at 7 pristine European peatland sites
- Good agreement at all sites in terms of seasonality and interannual variability

Bottom-up: inland waters

PROCESS-BASED MODEL

Physics

- 1D bulk mixed-layer thermodynamic CSLM

Carbon (multiple pools)

- lake NPP & heterotrophic respiration (modified from Maavara et al. 17)

02

- O₂ production, water column respiration,
Sedimentary O₂ demand, O₂ consumption by CH₄
- Diffusion, TKE mixing & air-water O₂ exchange

CH₄ in Sediment

- Net CH₄ production
- Diffusive and ebullitive pathways

CH₄ in Water Column

- CH4(d) consumption by O_2
- Bubble dissolution
- Diffusion, TKE mixing & air-water CH_4 exchange
- CH4(g) ebullition

UPSCALING: lake clustering approach

• Gridding: 2.5° x 2.5°, Lakes are divided into 4 lake-size classes

• For each grid & class: lake depth, TN and TP loads from watershed

- Model forced by daily climate forcing at each grid (ISIMIP)
- Downscaling to 0.1° (hydrolakes database, Messager et al., 2016)

Spatio-temporal variability in lake CH₄ emissions (diffusive + ebullitive pathways)

VERIFY GA meeting | May 9th -11th , 2022 | Paris

- CIF is community-based set of inversion tools in Python
- CIF interfaced with number of transport models: CHIMERE, FLEXPART, LMDz and TM5
- Prior information for inversions provided by BU models in WP4
- Inter-comparison exercise for CH₄ and N₂O underway the results of which will be used to estimate e.g. transport errors on fluxes

CIF Results: CH₄

Inversions run by FLEXPART, FLEXPART-EMPA and CHIMERE for 2006-2019

The 2 FLEXPART inversions provided background mixing ratios – found negative correlation between bias in background and total emissions

CIF Results: CH₄

Broadly similar spatial distribution of fluxes but some differences in flux increments (posterior– prior)

The 2 FLEXPART inversions similar magnitude and multiannual trends in emissions (except southern Europe)

Problem with CHIMERE – will be corrected!

CIF Results: N₂O

Inversion run by FLEXPART for 2005-2019

CHIMERE runs underway!

Preliminary results show no significant trend at European scale but substantial inter-annual variability

Characterization of TROPOMI CH₄ for use in inversions

Evaluation against TCCON shows mean global bias of 0.9 ± 17.8 ppbv

Comparison of TM5 (optimized with NOAA surface observations) and TROPOMI show similar biases as with GOSAT, largely explained by TM5's representation of stratospheric age-of-air Mean bias per lat bin

European inversions using TROPOMI CH₄

Simulations of TROPOMI XCH₄ using CHIMERE at 0.5° degrees using prior fluxes (same as CIF protocol) and posterior fluxes derived from CIF-CHIMERE inversions for the year 2019

Use of TROPOMI CH₄

European inversions using TROPOMI CH₄

CIF-CHIMERE inversions for 2019 find total EU27+UK emissions of 24 Tg/y in line with estimates using surfaceonly observations

Emission increases of 5-15% found in Po Valley (northern Italy), Netherlands and Belgium. Increases of 2.5% were found in region of Silesia in Poland – an important coal mining region

High-resolution inversions of CH₄

- High-resolution simulations for Europe using FLEXPART-COSMO driven by • MeteoSwiss meteo fields (COSMO-7) at 7 km resolution
- Background mole fractions provided by TM5-4DVar global optimization
- Fluxes optimized using 4DVar algorithm •

Country totals from different estimates for 2018

Use of δ^{13} C in inversions of CH₄: OSSE with FLEXINVERT for Europe

Comparison flux increments: 1) CH₄ only, 2) CH₄ + weekly δ^{13} C all sites, 3) CH₄ + hourly δ^{13} C at 5 selected sites, 4) perturbation (true-prior)

No benefit of including δ^{13} C observations for retrieving fluxes – at least not with only 5 insitu sites or flask measurements at all sites

RMSE	CH₄ only	CH ₄ + weekly δ ¹³ C	CH₄ + hourly δ¹³C	Perturbation
Microbial	1.047	1.116	1.123	1.425
Fossil	0.694	0.826	0.735	0.946
Total	1.154	1.271	1.249	1.630

Use of C₂H₆ in inversions of CH₄: results of global OSSE

Inversions run with FLEXINVERT using synthetic observations at NOAA sites

$$G = 1 - \frac{\sum(x_{true} - x_{post})}{\sum(x_{true} - x_{prior})}$$

Gain values (G) for inversions

	Oil & gas	Micro- bial	Total
CH ₄ & C ₂ H ₆	0.25	0.10	0.16
CH₄ only	0.23	0.14	0.19

Use of C₂H₆ in inversions of CH₄: results of global inversion

Data Assimilation System for CH₄ wetland fluxes

New DAS for CH₄ fluxes developed based on HIMMELI peatland flux models and TM5 atmospheric transport model and CTE EnKF data assimilation scheme

Anthropogenic and biogenic (wetland) emissions optimized (4 HIMMELI model parameters) by assimilating atmospheric mixing ratios 2 sites and EC fluxes at 2 sites in northern Finland

- CIF inversions
 - analysis of inversions results from model-intercomparison → determine influence of transport errors on fluxes
 - continued use in community (ongoing projects e.g. CoCO₂ and new projects, e.g., EYE-CLIMA)
- Model developments
 - ongoing use and developments of process-based and statistical models (CH4-DAS, CH₄ lake fluxes, ECOSSE, CAPRI)
- Ongoing use of TROPOMI data in inversions with CIF

- Agricultural emissions of CH₄ and N₂O from BU models to 2018, EDGAR shows decrease in emissions since 1970 of ~30%
- New spatially resolved uncertainty estimates of agricultural emissions from CAPRI
- New process-based model of lake CH₄ emissions, resolving seasonality → new estimates lake emission for Europe of 3.2 Tg/y
- TD estimates from CIF framework
 - CH₄ fluxes for 2005-2019 from 3 inversions
 - N₂O fluxes for 2005-2019 from 1 inversion (2nd soon)
- First results using δ^{13} C and ethane tracers for CH₄ inversions show limited benefit for Europe, more potential globally
- New DAS for CH₄ fluxes from wetlands

Thank you for your attention.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810