

VERIFY General Assembly

WP1:GHG MRV user requirement framework

WP1 leaders: Lucia Perugini (CMCC, Italy) & Dirk Günther (UBA, Germany)

May 9^{th} -11 th , 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

WP1:GHG MRV USER REQUIREMENT FRAMEWORK

VERIFY GA meeting | July 7th -9th , 2020 | Teleconference

WP1 Time schedule

Terminology analysis (D.1.2 – July 2018) MR Consolidated reporting requirement assessment (D1.3-April 2019)

Fact sheets -> per country/sector/gases

Verification requirements assessment (D1.4 – April 2019)

All WP1 partners actively contributed to the workshops

NETWORING: national inventory agencies and the scientific community (RVIM)

D1.1 USER REQUIREMENT DOCUMENT

VERIFY GA meeting | July 7th -9th , 2020 | Teleconference

OTHER ACTIVITIES

Cupdate of EU and MS Inventory Fact Sheets (UBA)

- Control Con
- Fact sheets for all 27 MS + EU, Iceland, Norway, Switzerland and UK

MAIN ACHIEVEMENTS TO DATE

Content of EU and MS Uncertainty Assessment

- Sased on GHG Emission data according to 2021 inventory submission
- IPCC Approach 1 (Error propagation)
- Results in line with previous uncertainty assessment

VERIFY GA meeting | 9-11 May, 2022 | Paris

SCIENTIFIC FINDINGS

Collaboration with WP3 on the assessment of needs for spatial explicit reporting under LULUCF regulation (841/2018) – Survey (CMCC, WU, IPRA, CITEPA)

Publications:

Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute?

Lucia Perugini^a, Guido Pellis^{a, *}, Giacomo Grassi^b, Philippe Ciais^c, Han Dolman^d, Joanna I. House^e, Glen P. Peters^f, Pete Smith^g, Dirk Günther^h, Philippe Peylin^c

Earth Syst. Sci. Data, 14, 1639–1675, 2022 https://doi.org/10.5194/essd-14-1639-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions

Zhu Deng^{1, *}, Philippe Ciais^{2, *}, Zitely A. Tzompa-Sosa², Marielle Saunois², Chunjing Qiu², Chang Tan¹, Taochun Sun¹, Piyu Ke¹, Yanan Cu¹, Katsumasa Tanaka²⁴, Xin Lin², Rona L. Thompson⁵, Hanqin Tian⁶, Yuanzhi Yao⁶, Yuanyuan Huang⁷, Ronny Lauerwald⁸, Atul K. Jain⁹, Xiaoming Xu⁹, Ana Bastos¹⁰, Stephen Sitch¹¹, Paul I. Palmer^{12,13}, Thomas Lauvaux², Alexandre d'Aspremont^{14,15}, Clément Giron¹⁴, Antoine Benoit¹⁴, Benjamin Poulter¹⁶, Jinfeng Chang¹⁷, Ana Maria Roxana Petrescu¹⁸, Steven J. Davis¹⁹, Zhu Liu¹, Giacomo Grassi²⁰, Clemel Alberge²¹, Francesco N. Tubiello²², Lucia Perugini²³, Wouter Peters^{24,25}, and Frédéric Chevallier²

Earth Syst-arth Syst. Sci. Data, 13, 2363–2406, 2021 Scient Strain Syst. Sci. Data, 13, 2363–2406, 2021 Scient Strain S Earth Syst. Sci. Data. 13, 2307-2362, 2021 http://doi.org/10.5194/essd-13-2307-2021 0. Author(3) 2021. This work is distributed un the Creative Commons Attribution 4.0 Licens

Review article

The consolidated European synthesis of CH_4 and N_2O emissions for the European Union and United Kingdom: 1990–2017

28 May 2021

Ana Maria Roxana Petersovi, 'Chunging Qiu', Philippe Clairi, 'Rona L. Thompsong', Philippe Paylin', Matthew J. McGrah', Efsio Solazzoo', 'Greet Janssen-Maenhoute', Francesco N. Tubieliog', Peter Bergamaschi@', Dominik Brunneng', Glen P. Petersov, I. Lena Höglund-Isakssong'', Fierre Regnier', Ronny Lauerwald@¹³³, David Bastviken Q'', Aki Tsurutag'', 'Wilfried Winiwartes¹³, 'Prabir K. Patrag¹⁰, 'Matthias Kuhnert', Gabriel D. Oreggioni⁴, Monica Crippa', Mariele Saunois', Lucia Perugine', 'Tinia Markkaman', 'Tuula Antog', 'Unstribe D. Core Zwaafinkog', Hangin Tang¹⁰, 'Yuanzhi Yao¹⁵, Chris Wilsong^{17,18}, Giulia Conchedda⁵, Dirk Günther¹⁷, Adrian Leip¹, Peter Smithg¹¹, Jean-Matthieu Haussaire', Anti Lephenn^{27,3}, Isicil, Manning^{27,19}, Giulia Conchedda⁵, Dirk Günther¹⁷, Adrian Leip¹, Peter Smithg¹¹, Jean-Matthieu Haussaire', Anti Lephenn^{27,3}, Isicil, Manning^{27,19}, Giulia Conchedda⁵, Dirk Günther¹⁷, Adrian Leip¹, Peter Smithg¹¹,

Check for

The consolidated European synthesis of CO₂ emissions and removals for the European Union and United Kingdom: 1990–2018

Ana Maria Roxana Petrescu¹, Matthew J. MGGrath², Robbie M. Andrew³, Philippe Peylin², Glen P. Peters³, Philippe Clais², Gregoire Broquet², Francesco N. Tubiello⁴, Christoph Gerbig⁵, Julia Pongratz^{6,7}, Greet Janssens-Maenhout⁸, Giacomo Grass⁸, Gert-Jan Nabuurs⁹, Pierre Regnier¹⁰, Ronny Lauerwald^{10,11}, Matthias Kuhnert¹², Juraj Balkovit^{21,14}, Mart-Jan Schelhaas⁹, Hugo A. C. Denier van der Gon¹⁵, Eftio Solazzo⁶, Chunjing Qiu², Roberto Pilli⁸, Joer K. Konovalov¹, Richard A. Houghton¹⁷, Dirk Günther¹⁸, Lucia Perugini¹⁹, Monica Crippa⁹, Raphael Ganzenmüller⁶, Ingrid T. Luijks⁹, Pete Smith¹², Saqr Munasar³, Rona L. Thompson⁹, Guila Conchedda⁴, Guillaume Montel²¹, Marko Schoze²¹, Ut Karsters²², Patrick Brockmann⁷, and

Albertus Johannes Dolman¹

Article Assets Peer review Metrics Related article

NEXT STEPS

D1.7 Report of last networking meeting

D1.8 Report on the connection of VERIFY and IPCC process

Scientific outcomes of the project in line with IPCC inventory methods are communicated **to IPCC via EF database**

Lead: EMPA

Thank you for your attention.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

OVERALL CONCLUSIONS

	GHG NATIONAL INVENTORIES	TD-MODELS
Temporal scale	Low resolution:	High resolution:
	Yearly, until t-2 (t-1)	Monthly, hourly
Spatial scale	Low resolution:	High resolution of spatially
	Territorial, country specific	disaggregated data,
	(per Member State)	applicable for
		 regional/global coverage
		without political border
		- local scale for verification
		of e.g. large point sources
Activity link	Fine granularity:	Course granularity:
	Disaggregated by source,	Larger groups of activities
	subsector, human activity	for which spatial and
	specific	temporal data are available,
		of interest for near real time
		emission assessment
Challenges	Direct/indirect emissions,	Modeling of processes,
	uncertainties, increased	biofuel/biomass, Carbon
	complexity	Capture and Storage.

- For which emissions sources would new atmospheric and/or flux measurements significantly help revising the emission factors most?
 - C The most important sectors were judged to be crop production, then livestock, and then waste.

C Which task would you tackle first for further improvement?

- First the spatial distribution,
- c top down evaluation with inverse modeling
- seasonal distribution

What are the challenges for improving CH4/N2O Inventories?

Measurements are considered to be most crucial for improving implied emission factors and for assessing the spatial and seasonal distribution of the emissions.

Where do you see the largest assets of top down inventories using observations and inverse modeling?

Chis is most useful for reducing the uncertainties and for increasing our understanding of the emission processes into the atmosphere.

- C The bottom-up mean agrees generally well with the UNFCCC estimates, but show larger (climate) variability (i.e. ORCHIDEE) → More disaggregated data are important to understand the agreement is for good reason or by chance, and also to understand better the drivers.
- The top-down ensemble estimates show large variability and uncertainty
- For CO2 and LULUCF sector, there is the need to reduce the gap between inventories and models by defining common definitions in land use reporting
- Compare emission/removal estimates.
 Compare emission/removal estimates.
- **C** The spatial resolution of current top-down models could be a limiting factor for the application of these instruments for verification purposes
- **Categories and sectors** need to be identified
- Control Con