

VERIFY General Assembly

Summary and key messages from synthesis and deliverables WP5 and WP6

Team: VUA, CICERO, LSCE, EC-JRC, RIVM Acknowledging all VERIFY consortium and outside contributors

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

May 9th, 2022 Paris, France

Key scientific results over the project duration

Remaining deliverables issues (if any)

Sext steps (if relevant)

WP5 Key scientific results over the project duration

T5.1 Reconciliation of bottom-up emission estimates, Robbie Andrew (CICERO, Norway)

T5.2 & T5.3 Reconciliation of bottom-up and top-down observation-based GHG budgets (scientific publications), Roxana Petrescu (VU Amsterdam, The Netherlands

T5.4 Past trends, annual drivers analysis and short-term predictions of emissions, Robbie Andrew (CICERO, Norway)

T6.2 Annual GHG budget fact sheets for China (Philippe Ciais, LSCE France)

- Contast base of the system boundaries
- Section 3 Control Control Section 3 Control S
- Moving beyond system boundaries, we can start to investigate differences

EU27 CO₂ EMISSIONS: 'RAW'

VERIFY

EU27 CO₂ EMISSIONS: 'HARMONISED'

- Couring the project we have explored the reasons for differences between the global emissions datasets, with a focus on the EU
- Extensive communication with the dataset providers

EXAMPLE: EIA ESTIMATES OF GERMANY'S OIL CO₂

EXAMPLE: EIA ESTIMATES OF GERMANY'S OIL CO₂

Some outcomes

Findings of errors fed back to

- **CEDS:** solid fuels in Estonia, Germany
- PRIMAP-hist: double-counting in Annex 1 countries, inflated fugitive
- EIA: double-counting of oil products
- CEADS: omitted LNG, incorrect cement
- CDIAC: omission of global stock changes of coal

Earth Syst. Sci. Data, 12, 1437–1465, 2020 https://doi.org/10.5194/essd-12-1437-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

A comparison of estimates of global carbon dioxide emissions from fossil carbon sources

Robbie M. Andrew

CICERO Center for International Climate Research, Oslo 0349, Norway

Correspondence: Robbie M. Andrew (robbie.andrew@cicero.oslo.no)

Received: 13 February 2020 – Discussion started: 3 March 2020 Revised: 27 May 2020 – Accepted: 29 May 2020 – Published: 29 June 2020

Abstract. Since the first estimate of global CO_2 emissions was published in 1894, important progress has been made in the development of estimation methods while the number of available datasets has grown. The existence of parallel efforts should lead to improved accuracy and understanding of emissions estimates, but there remains significant deviation between estimates and relatively poor understanding of the reasons for this. Here I describe the most important global emissions datasets available today and – by way of global, large-emitter, and case examples – quantitatively compare their estimates, exploring the reasons for differences. In

T5.2 RECONCILIATION OF BOTTOM-UP AND TOP-DOWN OBSERVATION-BASED GHG BUDGETS (AND T5.3 SCIENTIFIC PUBLICATIONS)

D5.2, D5.3, D5.4. and D5.5. (4 reports M12, 24, 36, 48) R conciliation of bott in-up and top-down methods at sub-national scales

T3 Regular assertiments of the full GHG balance of EU countries and ecosystems(I6-M48), LearVUA

D5.9, D5.10 Scientific review articles on multi-gas GHG budgets (M24, M48), VUA Open access and peer-reviewed publication (Earth System Science Data) compiling and quantifying GHG budgets for European countries, including the application to verification of UNFCCC inventories

VERIFY AND WP5 PROGRESS

Earth Syst. Sci. Data, 12, 961-1001, 2020 https://doi.org/10.5194/essd-12-961-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

emissions: a review and benchmark data

Ana Maria Roxana Petrescu¹, Glen P. Peters², Greet Janssens-Maenhout³, Philippe Ciais⁴, Francesco N. Tubiello⁵, Giacomo Grassi³, Gert-Jan Nabuurs⁶, Adrian Leip³, Gema Carmona-Garcia³, Wilfried Winiwarter^{7,8}, Lena Höglund-Isaksson⁷, Dirk Günther⁹, Efisio Solazzo³, Ania Kiesow⁹, Ana Bastos¹⁰, Julia Pongratz^{10,11}, Julia E. M. S. Nabel¹¹, Giulia Conchedda⁵, Roberto Pilli³, Robbie M. Andrew², Mart-Jan Schelhaas⁶, and Albertus J. Dolman¹

¹Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, the Netherlands ²CICERO, Center for International Climate Research, 0349 Oslo, Norway ³European Commission, Joint Research Centre EC-JRC, 21027 Ispra, Italy ⁴Le Laboratoire des Sciences du Climat et de l'Environnement LSCE, Gif-sur-Yvette CEDEX, 91191, France ⁵Food and Agriculture Organization FAO, Statistics Division, 00153 Rome, Italy ⁶Wageningen University and Research (WUR), Wageningen, 6708PB, the Netherlands ⁷International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria ⁸Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, 65-417, Poland ⁹Umweltbundesamt (UBA), 14193 Berlin, Germany ¹⁰Department of Geography, Ludwig Maximilian University of Munich, 80333 Munich, Germany ¹¹Max Planck Institute for Meteorology, 20146 Hamburg, Germany

Earth Syst. Sci. Data, 13, 2363-2406, 2021 https://doi.org/10.5194/essd-13-2363-2021 C Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. (c) ①

The consolidated European synthesis of CO₂ emissions and removals for the European Union and United Kingdom: 1990-2018

Ana Maria Roxana Petrescu¹, Matthew J. McGrath², Robbie M. Andrew³, Philippe Pevlin², Glen P. Peters³, Philippe Ciais², Gregoire Broquet², Francesco N. Tubiello⁴, Christoph Gerbig⁵, Julia Pongratz^{6,7}, Greet Janssens-Maenhout⁸, Giacomo Grassi⁸, Gert-Jan Nabuurs⁹, Pierre Regnier¹⁰, Ronny Lauerwald^{10,11}, Matthias Kuhnert¹², Juraj Balkovič^{13,14}, Mart-Jan Schelhaas⁹, Hugo A. C. Denier van der Gon¹⁵. Efisio Solazzo⁸, Chunjing Oju², Roberto Pilli⁸, Igor B. Konovalov¹⁶ Richard A. Houghton¹⁷, Dirk Günther¹⁸, Lucia Perugini¹⁹, Monica Crippa⁹, Raphael Ganzenmüller⁶, Ingrid T. Luijkx9, Pete Smith12, Sagr Munassar5, Rona L. Thompson20, Giulia Conchedda4, Guillaume Monteil²¹, Marko Scholze²¹, Ute Karstens²², Patrick Brockmann², and Albertus Johannes Dolman¹ Published 25.3

Earth Syst. Sci. Data, 13, 2307-2362, 2021 https://doi.org/10.5194/essd-13-2307-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. \odot \odot

Earth System

Earth Syst. Sci. Data, 12, 1-29, 2020 https://doi.org/10.5194/essd-12-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

The consolidated European synthesis of CH₄ and N₂O emissions for the European Union and United Kingdom: 1990-2017

Ana Maria Roxana Petrescu¹, Chunjing Oiu², Philippe Ciais², Rona L, Thompson³, Philippe Peylin², Matthew J. McGrath², Efisio Solazzo⁴, Greet Janssens-Maenhout⁴, Francesco N. Tubiello⁵, Peter Bergamaschi⁴, Dominik Brunner⁶, Glen P. Peters⁷, Lena Höglund-Isaksson⁸, Pierre Regnier⁹, Ronny Lauerwald^{9,23}, David Bastviken¹⁰, Aki Tsuruta¹¹, Wilfried Winiwarter^{8,12}, Prabir K. Patra¹³, Matthias Kuhnert¹⁴, Gabriel D. Oreggioni⁴, Monica Crippa⁴, Marielle Saunois², Lucia Perugini¹⁵, Tiina Markkanen¹¹, Tuula Aalto¹¹, Christine D. Groot Zwaaftink³, Hangin Tian¹⁶, Yuanzhi Yao¹⁶, Chris Wilson^{17,18}, Giulia Conchedda⁵, Dirk Günther¹⁹, Adrian Leip⁴, Pete Smith¹⁴, Jean-Matthieu Haussaire⁶, Antti Leppänen²⁰, Alistair J. Manning²¹, Joe McNorton²², Patrick Brockmann², and Albertus Johannes Dolman¹

A comparison of estimates of global carbon dioxide emissions from fossil carbon sources

Robbie M. Andrew CICERO Center for International Climate Research, Oslo 0349, Norway Earth System

Science

Data

What was the aim of all reports?

reconciling the differences between bottom-up and top-down emission estimates, providing a <u>assessment of persistent differences and their</u> <u>potential causes</u>

Did we achieve this?

YES and Not yet...

- Great collaboration/networking between all partners
- Unique collection of BU and TD estimates, during the last 4 years
- We published assessments of these differences for EU27+UK
- Individual countries have been studied as well:

see individual country plots on

http://webportals.ipsl.jussieu.fr/VERIFY/FactSheets/

We identified differences between data sources and explained some...

HISTORY AND PROGRESS OF RESEARCH

We started like this:

D5.2 a 'proof of concept' and a first compilation of pre-VERIFY data (three GHGs for AFOLU)

CH₄ and N₂O from Agriculture

v2018

WHAT ISSUES WE IDENTIFIED BACK IN 2019? AGRICULTURE

□ All inventory-based data sources are consistent with each other:

- \blacktriangleright they capture well recent emissions reductions
- ➤ they mainly use default EFs from IPCC 2006 guidelines

□ Small differences pertain to:

- \succ use different versions of the same AD
- ➢ some use expert judgment EFs (EDGAR)
- ➤ the choice of the Tier method for calculating emissions (the Tier level a country applies depends on the national circumstances, which explains the variability of uncertainties among the sector itself as well as among EU countries)

HISTORY AND PROGRESS OF RESEARCH CONT.

 In IPCC AR5, the residual sink is inferred as a difference between FF emissions + net land use – growth rate – ocean uptake, and thus matches the observed CO₁ growth rate by construction. In this method, a bias on net land use change is transferred to the inferred residual sink.

(2) In NGHGI, the LULUCF C balance only covers direct management actions and does not match the CO2 growth rate. Any difference with the CO2 growth rate can be attributed to errors in NGHGI estimates and / or fluxes on unmanaged lands.

(3) In DGVMs, net land use change includes a source corresponding to the loss of additional sink capacity (LASC). Some models include limited land management (wood harvest, crop

harvest). Nonmodeled management from forestry, cropland and pasture management, conservation / restoration management, being in the grey area part of the orange box. (4) DGVMs have parameterizations and structural uncertainties, and their net land flux does not match the global CO2 growth rate, leading to a global BIM (budget imbalance).

- Within the UNFCCC practice, each country uses its own specific method to estimate the CO₂ fluxes.
- We need to distinguish between direct and indirect effects on land use emissions especially for the purpose of reconciling land-related emissions from global datasets and NGHGI.

https://essd.copernicus.org/articles/12/961/2020/

General remarks:

- When independent inventories agree well for a sector, does not necessarily mean that the estimate is better in the sense that it is closer to real emissions (agreement across inventories = the different inventories used the same methodology and activity data sources).
- Countries should use, whenever possible, global inversions to provide additional constraints for the verification and reconciliation purposes.

For the next 3 years these conclusions remained and formed the basis of all reports...and were confirmed even if more data was added to the analysis...

D5.3, D5.4 AND D5.5: THE CONSOLIDATED EUROPEAN SYNTHESIS OF THE THREE GHGS

v2019

VERIFY

ce

25

v2020

Some comparisons...

CSR (2006-2017) v2019: -394 Tg C v2020: -231 Tg C v2021: -207 Tg C UNFCCC: -89 Tg C

Reported NGHGI uncertainties for total LULUCF:

v2019: 16%, v2020: 11% and v2021: 24%..last revised by Bradley Matthews (UBA Vienna) to 18%

Also GCP revised estimates getting closer the UNFCCC (2001-2018) estimate v2019: -249 Tg C v2020: -220 Tg C v2021: -201 Tg C UNFCCC: -89 Tg C

D5.3, D5.4 AND D5.5: THE CONSOLIDATED EUROPEAN SYNTHESIS OF CH₄ v2019, v2020 and v2021

Some comparisons

13000

12000

11000

 CH_4 emissions from v2019 and v2020

Slightly revised UNFCCC estimates/uncertainties

Average for same period 1990-2018 CAPRI: 9.4 Tg CH₄ UNFCCC: 9.1 Tg CH₄

D5.3, D5.4 AND D5.5: THE CONSOLIDATED EUROPEAN SYNTHESIS OF N₂O v2019, v2020 and v2021

SOME COMPARISONS

N₂O emissions from v2019 and v2020

Not much revision of UNFCCC emissions/ uncertainties

Average for same period 2000-2018 CAPRI: 624 kton N₂O UNFCCC: 650 kton N₂O

CONCLUSIONS

Fossil CO₂

>Improvement of inversion systems for fossil emissions - uncertainties

Land CO_2

Bottom-up models show larger (climate) variability (i.e. ORCHIDEE, DGVMs)
The top-down ensemble estimates of CO₂ show still large variability
LULUCF: reduce the gap between inventories and models by defining common definitions in land use reporting

CH_4

➤ Large emissions from inversions: gap due to natural sources or underestimation of anthropogenic emissions, seasonality (wetlands) not represented in NGHGI

N_2O

➤Large gap between inversions and BU estimates not caused by natural emissions, seasonality (N fertilization) not represented in NGHGI

Under development: Quantification and inclusion of lateral fluxes, CIF

NOT YET...

We identified and explained some differences, especially those belonging to different versions of the scientific results but communities still need to agree on the same approach (anthropogenic/natural, definitions LULUCF etc.)

- Input to the 1st GST and last synthesis (for 2021) to be continued in CoCO₂
- Inventory agencies will report on inconsistencies found at country level

DON'T MISS TOMORROW'S NETWORKING MEETING!!

Revision of UNFCCC uncertainties (CH₄ and N₂O)

T5.4 PAST TRENDS, ANNUAL DRIVERS ANALYSIS AND SHORT-TERM PREDICTIONS OF EMISSIONS

STATUS OF WP5 AND WP6 DELIVERABLES

D5.4	Third report - Reconciliation of bottom-up and top-down methods at sub-national scales	STICHTING VU	30 Nov 2020	November 2021
D5.5	Final report - Reconciliation of bottom-up and top-down methods at sub-national scales	STICHTING VU	30 Nov 2021	finalized
D5.8	Final - Fact sheets with national observation-based GHG Budgets from project results	CICERO	31 Dec 2021	-
D5.10	Second and final scientific review article on multi-gas GHG budgets	STICHTING VU	31 Jan 2022	work in progress
D5.12	Relationships between climate anomalies and natural/anthropogenic GHG budgets variability	CEA	31 Jan 2021	
D5.13	Analysis of recent extreme events' impacts on GHG budgets anomalies	CEA	30 Nov 2020	-
D6.5	Report (fact sheet) on the observation-based to Indonesia	RIVM	31 Jul 2021	work in progress
D6.6	Knowledge transfer workshop with US, China, Indonesia	JRC	31 Jul 2021	-
D6.7	Workshop illustrating the GHG verification internationally based on example outside of Europe	JRC	31 Jul 2021	-
D6.9	Final version of VERIFY Database and data-management infrastructure	CEA	31 Aug 2021	-
D6.10	Report on the legacy of the VERIFY Database and data-management to future operations	ICOS ERIC	31 Aug 2021	-
D6.11	Report on the future operational transition of the VERIFY observation-based GHG monitoring system	ECMWF	30 Nov 2021	-
D6.12	Online update of national emission inventory and observation-based GHG budget trends and NDC mitigation targets	JRC	31 Jul 2021	finalized
	Online representation of the geographic distribution of GHG emissions and sinks uncertainties and how targeted new			
D6.13	observations will help to reduce them	JRC	30 Nov 2021	work in progress

- Last synthesis (2021 included) to be hosted by the CoCO₂ project
- Control Con
- S proposals participated to the Horizon Europe global forcers call
- VERIFY contributors to the European chapter of RECCAP2

China facts sheets

The methodology from VERIFY was applied to China

- Larger land CO₂ sink by inversions that carbon storage change by land models and inventories
- Agreement improved when accounting for lateral fluxes

China facts sheets

- For CH₄ an upward trend of emissions consistent between GOSAT and in-situ stations based inversions
- But large disagreement of inversions and between Inventories for sectors
- Trend of emissions in inventories domianted by the energy sector

- Very high resolution inversions were performed over the Shanxi basin using TROPOMI data
- Emissions of 8.5 ± 0.6 Tg CH4 y-1 consistent with EDGARV6
- Correlation between coal seam depth and emission rates at prefecture level

Thank you for your attention.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

May 10th, 2022

Paris, France

VERIFY General Assembly

Summary and key messages from synthesis and deliverables WP5 and WP6

Team: VUA, CICERO, LSCE, EC-JRC, RIVM Acknowledging all VERIFY consortium and outside contributors

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

WP5 CONT. Key scientific results over the project duration

T5.5 Drivers behind ecosystem carbon fluxes in Europe (Matthew McGrath, LSCE, France)

VERIFY General Assembly

T5.5. Drivers behind ecosystem carbon fluxes in Europe M. McGrath, P. Peylin, P. Ciais

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810

NET CARBON FLUXES

Photosynthesis (Photo)

NET CARBON FLUXES

NET CARBON FLUXES - REAL

Residual of two large fluxes!

MOTIVATION - CONT.

Klesse et al. (2018)

MOTIVATION - CONT.

Klesse et al. (2018)

MOTIVATION - CONT.

Klesse et al. (2018)

QUESTIONS

- Does the same 15.9 degree threshold exist for non-forested sites in Europe?
- Does the same 15.9 degree threshold exist in commonly-used wall-to-wall products (maps)?

FLUXNET sites

FLUXNET sites

Gridded pixels

FLUXNET sites

Gridded pixels

• FLUXNET pixels

ALGORITHM

FLUXNET site

1. Original timeseries (T, Photo)

 Original timeseries (T, Photo)
↓
2. Growing season

ALGORITHM

ALGORITHM

ADDITIONAL STEPS

- Filter gridded pixels
- Calculate variance inflation factors
- Determine which predictor is the controlling variable for each pixel/site

PHOTOSYNTHESIS RESPONSE TO TEMPERATURE

FLUXNET site -12 degrees

PHOTOSYNTHESIS RESPONSE TO TEMPERATURE

PHOTOSYNTHESIS RESPONSE TO TEMPERATURE

FLUXNET site -12 degrees

General gridded pixel -26.5 degrees

FLUXNET gridded pixel -19 degrees

WP6 Key scientific results over the project duration

T6.1 Annual GHG fact sheets for the EU as a whole (Greet Janssens-Maenhout, EC-JRC, Italy)

T6.2 Annual GHG budget fact sheets for US, China, Indonesia (Philippe Ciais, LSCE France and Paul Ruyssenaars, RIVM, The Netherlands)

T6.4 Online visualization of the trends of GHG emissions from sources and sinks and progress towards reduction targets (NDCs) (Roxana Petrescu, VU Amsterdam, The Netherlands)

T6.5 Online visualization of regional GHG budgets uncertainties and how new observations could reduce them (Roxana Petrescu, VU Amsterdam, The Netherlands)

T6.3 Establishment of the project-level data and information infrastructure (Philippe Peylin, LSCE, France)

T6.1 ANNUAL GHG FACT SHEETS FOR THE EU AS A WHOLE (WHAT FOR?)

- starting from ETS, adding ESD & later LULUCF under mitigation targets:
 - More holistic but more uncertain!
 - Problem in linking incentives and carbon tax
- Acceleration (x2.6) of GHG reduction is needed (REPowerEU)
- Climate-neutral land use by 2035 needs a reversing of the declining carbon sink

Closed workshop (May 2021) with USA, China and Indonesia (research community + natinal inventory compilers)

International AFOLU GHG workshop (November 2021) with CEOS/CGMS, GFOI, GEO, GCOS, GOFC-GOLD

Data sets and standards, Policy needs and user requirements, C cycle community, research needs, MVS system

T6.2 ANNUAL GHG BUDGET FACT SHEETS FOR US BASED ON INTERNATIONAL METHODOLOGY OF TASK 6.1

USA total CH₄ emissions: UNFCCC vs top-down estimates from inversions

GAINS anthropogenic

Kyoto Protocol (entering into force) --- Wetland: GCP median – GOSAT satellite median ····· Paris Agreement SURF min-max Lakes reservoirs — UNFCCC -- SURF median Geological Etiope (scaled by Hmiel et al., 2020) GOSAT satellite min-max Wetland: GCP min-max

TD Global (SURF) total

VERIFY

2nd BUR Trend: +10.6%/yr growth Energy predominant sector

T6.2 ANNUAL GHG BUDGET FACT SHEETS FC

CO₂ land

2nd BUR & most recent 2020 inventory indicate net (substantial) emissions, increasing trend

Forest and peat fires included

GCP2021 inversion/TRENDYv10 DGVMs: Net small emissions/sink

T6.2 ANNUAL GHG BUDGET FACT SHEETS FOR INDONESIA

CH₄

VERIFY

Inversions match well the trends of the inventories and BU sources

T6.2 ANNUAL GHG BUDGET FACT SHEETS FOR INDONESIA

 $N_2 O$

CONCLUSIONS INDONESIA FACTSHEETS

Check datasets (draft) factsheet D6.5 and 3rd BUR;

For CO₂ land, substantial differences between inversions/DGVM's and inventories

- mismatch of TD observations and BU estimates are for biomass use explained in the delayed effect of consumption due to international trade, which plays an important role.

- BU estimates of biomass fires are not very reliable (and show large changes over the years – related to change in methodology)

Inversions suggest an underestimation of both CH₄ and N₂0 emissions in the inventory

- N₂O data are not collected regularly and are therefore highly variable

T6.4 ONLINE VISUALIZATION OF THE TRENDS OF GHG EMISSIONS FROM SOURCES AND SINKS AND PROGRESS TOWARDS REDUCTION TARGETS (D6.11)

Where do EU27 and three case study countries USA, China and Indonesia stand in terms of their current GHG emissions?

Generation about performance towards meeting their reduction targets?

OBSERVATION-BASED ESTIMATES – EU27

VERIFY

small sink increase of 16 % in 2019 compared to 1990. Decreasing trend is mainly due to aging forest, increased harvest rates and disturbances net reduction of 27 % in 2019 compared to 1990. KP1: 12% KP2: under evaluation in 2022, expected 25%

VERIFY GA meeting | May 9th -11th , 2022 | Paris, France

NDCs EU27 TOTAL AND AFOLU

- EU27 pledge from its 2nd NDC to reduce emissions 55 % below 1990 levels and achieving climate-neutrality in 2050.
- End 2019 EU27 reduced 26%, ~1% / yr ...remains 29% till 2030 (~3% / yr)?

 revised LULUCF regulations including the target of 310 Mt CO₂eq sink by 2030 and AFOLU climate neutrality by 2035

VERIFY

~140 Mt reduction needed to reach 0 in 2035 for AFOLU

VERIFY GA meeting | May 9th -11th , 2022 | Paris, France

OBSERVATION-BASED ESTIMATES – USA

VERIFY

NDCs USA TOTAL AND AFOLU

USA: Total CRFs GHG emissions and NDC reductions

United States is setting an economy-wide target of reducing its net greenhouse gas emissions by 50-52 % below 2005 levels in 2030.

٠

• They surpassed its 2020 target with 17% below 2005 and expected to decrease 26-28% up to 2025

 Agriculture contributes
9.6% of total GHG emissions

VERIFY

- Soil management larger contributor of N₂O (75%)
- LULUCF C stock offsets total GHG emissions by 12% in 2019

OBSERVATION-BASED ESTIMATES – CHINA VERIFY CHN: Comparison of fossil CO2 emissions from multiple inventory datasets 12000 • UNFCCC 2nd BUR GCP v2021 China plans to reach its CDIAC v2021 BP v2021 10000 PRIMAP-Histy2.3.1 CR peak of CO₂ emissions PRIMAP-Histv2.3.1 TP EDGAR v6.0b EDGAR_FT2020 8000 by 2030 EIA v2022 Mt CO₂ / yr - CEDS 2021 04 21 Kyoto Protocol (entering into force) 6000 ····· Paris Agreement CHN: Comparison of net CO2 land sources and sinks from multiple inventory datasets 4000 2000 Kyoto Protocol (entering into force) Paris Agreement 1500 2000 BLUE_GCP2021 H&N GCP2021 1000 FAOSTATy2022 LULUCE 1000 202 1990 1995 2000 2005 2010 2015 Median TRENDYv10 MIN MAX TRENDYv10 500 UNFCCC LULUCF 2nd BUR Mt CO₂ / yr 0 C sink in China tripled in 2014 (+183 %) -500 compared to 1994 -1000 -1500 -2000 1990 2000 2010 2020 1995 2005 2015 CHN: Total sectoral CH4 emissions from the 2nd UNFCCC BUR CHN: Total sectoral N2O emissions from the 2nd UNFCCC BUR 70 3000 112 % increase 60 2500 212 % increase 50 2000 Total CH4 emissions Total N2O emissions Mt CH₄ / yr 0 0 17 / 0²N UNFCCC 2nd BUR UNFCCC 2nd BUR Energy Energy PI Aariculture Agriculture せ LULUCF LULUCF Waste Waste 1000 20 500 10 0 0 0 1990 1994 2000 2005 2010 2012 2014 1990 1994 2000 2005 2010 2012 2014

NDCs CHN TOTAL AND AFOLU

CHN aims to have CO_2 emissions peak before 2030 and achieve carbon neutrality before 2060; Not clear if neutrality refers to CO_2 eq or only CO_2 !!!

 China commits to reductions for the AFOLU sector by measures of reduces chemical fertilizers, green technologies and improved livestock productivity, energy-saving tech

VERIFY

• Large afforestation areas

OBSERVATION-BASED ESTIMATES – INDONESIA

VERIFY

Mt CO₂eq / yr

NDCs IDN TOTAL AND AFOLU

Indonesia: Total 3rd BUR GHG emissions and NDC reductions

-300 -500 1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

reduction) from BAU Inventory fluctuations

> IDN LULUCF w/o peat fires BAU NDC LULUCF

CM1 LULUCF 2020, 2030 CM2 LULUCF 2020, 2030

CM1 AGRI 2020, 2030

CM2 AGRI 2020, 2030 GECO2021 projections LULUCF

GHG IDN AFOLU

GHG IDN AGRI

BAU NDC AGRI

Kyoto Protocol (entering into force)

Paris Agreement

reduction period

2065

2070

include fires

CONCLUSIONS

Very different NDC targets between the 4 case studies

- EU27 reduced in the last 30 years 26% (2019 compared to 1990), remains 29% to be reduced in less than 10 years !!!
- Series Agriculture and LULUCF (AFOLU) will bear the burden of meeting next targets (neutrality in 2035)!
- USA is on the right path to meeting targets in 2030 (base year 2005 !)
- CHN and IDN are still to reach their maximum emissions

T6.5 ONLINE VISUALIZATION OF REGIONAL GHG BUDGETS UNCERTAINTIES AND HOW NEW OBSERVATIONS COULD REDUCE THEM (D6.12)

Provide policymakers the knowledge on where in Europe extra efforts such as additional measurements and/or more accurate GHG accounting infrastructures would best reduce the EU-scale GHG budget uncertainty.

Control Sector Secto

uncertainty reduction (1-post/prior) 2018 -12 16 12 20 σ 47 99 42 37 32 27 22 22 17 12 7 2 -2 -7 -12 -17 -22 -27 9 \sim -32 -37 -42 36 -47 -16 -12 12 16 20

FLEXINVERT uncertainty reduction maps computed as (1-post/prior) for 2018 with two <u>different sets of observation stations</u>.

CarboScopeRegional uncertainty reduction maps computed as $(1-\Delta post/\Delta prior)$ for 2006 and 2018 using Monte Carlo approach on prior errors.

T6.3 ESTABLISHMENT OF THE PROJECT-LEVEL DATA AND INFORMATION INFRASTRUCTURE

Thank you for your attention.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810