

VERIFY General Assembly

PhD thesis paper - Mounia MOSTEFAOUI supervised by Hervé Le Treut

with Philippe Ciais, Philippe Peylin and Matt McGrath

May 9th-11th, 2022

Synthesis of GHG trends over the last three decades across Africa

Summary

- Fossil CO₂ emissions
- LULUCF CO₂ emissions and removals
- CH₄ anthropogenic fluxes
- N₂O total emissions
- GHG synthesis

RESEARCH QUESTIONS

- What are the current GHG budgets over Africa from different sources?
- What are the differences between those estimates?
- What are the trends?

METHODS AND DATASETS

Map of the 6 groups of African emissions

- Groups by geographical and eco-climatic areas.
- South Africa specific.

METHODS AND DATASETS - LIST OF BU AND TD METHODS

Dataset type/name	Method	CO ₂	CH ₄	N ₂ O	Spatial resolution (degrees)	Optimization	Time period covered in the present work
					Inversions		
CAMS (GCB 2019)	TD	×			Global: 3.75°×1.875°	Variational	2000-2018
CarbonTracker Europe (CTE) (GCB 2019)	TD	×			Global : 3°× 2° Regional: 1°× 1°	Ensemble Kalman filter	2000-2018
Jena CarboScope	TD	×			Global: 4°× 5°	Conjugate gradient	2000-2018
Global Methane Budget ensemble (*see 22 products details in the supplementary table ST1)	TD		×		from 1° × 1 ° to 6° × 4°		2000-2017* (*variations from 2003-2015, 2000-2015, 2010-2017: see detailed period coverage for each dataset in the supplementary section.)
PyVAR	TD			×			1998-2017
TOMCAT- INVICAT	TD			×	5.6° × 5.6°	4DVAR	1998-2015
MIROC4 - ACTM (JAMSTEC)	TD			×		Bayesian statistics	1998-2016
DGVMs							
TRENDYv9* (*see supplementary table for the 14 products)	BU	×			0.5°× 0.5° (land surface) or 1° x 1°		1990-2019
Other BU inventories							
PRIMAP-hist	BU	×	×	×			1990-2019
GCP (CDIAC)	BU	×			0.1°× 0.1°		1990-2019
UNFCCC	BU	×					1990-2015
GFEDv4	BU		×		0.25° × 0.25°		1997–2016

METHODS AND DATASETS

NUMBER OF NEW AVAILABLE UPDATED NATIONAL COMMUNICATIONS FOR CO2 LULUCF PER YEAR PER AFRICAN GROUPS

- Non-Annex I <=> reports not required every year.
- Some years with numerous updates, other sparse.

MAPS OF FOSSIL CO₂ ANTHROPOGENIC EMISSIONS FOR AFRICAN COUNTRIES

Mostefaoui et al., in prep.

South Africa Lesotho 22.57 0.76 MAPS OF THE
ANTHROPOGENIC
CH₄
AND N₂O EMISSIONS
FOR AFRICAN
COUNTRIES

8
Mostefaoui et al., in prep.

South Africa Lesotho

AFRICAN FOSSIL CO₂ EMISSIONS

Synthesis of African mean anthropogenic fossil CO₂ emissions (CDIAC) over three decades. Contribution of each sector to the change.

Total Africa CO₂ emissions by sector - GCP

Rapid increase of fossil CO₂ emissions in Africa that doubled since 1990.

Mostefaoui et al., in prep.

• Fossil CO_2 in Africa are dominated by an increase of **coal** emissions for the decennial 1990-98 compared to 1999-2008 (+9.4%) and by **oil** for the decennial 1999-2008 compared to 2008-2017 (+16.4%).

VERIFY

MAP OF AFRICAN LULUCF CO₂ EMISSIONS AND REMOVALS

- Most countries are sinks, except 10.
- Biggest sink in Central Africa.
- 2006 IPCC GL about "managed land" may differ.

CO₂ LULUCF EMISSIONS: UNFCCC vs. DGVMs AND TD METHODS

Mostefaoui et al., in prep

Mean of overlapping time period (2000-2018) :

- Mean GCP inversions: + 0.27 Gt CO_2 e.yr⁻¹ (min: -0.8 Gt CO_2 e.yr⁻¹; max: 1.3 Gt CO_2 e.yr⁻¹)
- Mean Trendy v9: 0.29 Gt CO₂ e.yr⁻¹ (min: 2 Gt CO₂ e.yr⁻¹; max: 2.1 Gt CO₂ e.yr⁻¹)
- Mean UNFCCC: 2.71 Gt CO₂ e.yr⁻¹

CH₄ ANTHROPOGENIC FLUXES

Emissions increase from 2001-2009 to 2010-2018 :

Mostefaoui et al., in prep.

1116 Mt CO₂ eq. -> 1282 Mt CO₂ eq.

VERIFY

- All sectors (except IPPU) contribute to the + 14.8% increase.
- Mainly from **Agriculture**: 433 Mt CO_2 eq. -> 440 Mt CO_2 eq. (+7.9% of the increase) and Waste (+5.8% of the increase).
- Regions shifts from 2001-2009 to 2010-2018
 - 2 main contributors: Northern Africa + Sub Sahelian western Africa
 - African shift: Energy -> Agriculture as main emitting sector in 30 years => due to North Africa trend mainly.

12

VERIFY

Anthropogenic CH₄ TD vs BU estimates

- BU method (PRIMAP) & 2TD global inversions with withdrawal of wildfire emissions (GFEDv4). Mostefaoui et al., in prep
 - Mean of overlapping time period (2010-2017) :
 - Mean GOSAT inversions: 25 627 kton CH_4 .yr⁻¹ (min: 15 359 kton CH_4 .yr⁻¹; max: 32 886 kton CH_4 .yr⁻¹)
 - Mean Surface: 28 254 kton CH_4 .yr⁻¹ (min: 13 962 kton CH_4 .yr⁻¹; max: 34 339 kton CH_4 .yr⁻¹)
 - Mean PRIMAP-hist: 49 728 kton CH₄.yr⁻¹
 - Mean wetlands: 33 075 kton CH₄.yr⁻¹ (min: 19 231 kton CH₄.yr⁻¹; max: 37 676 kton CH₄.yr⁻¹)
 - Mean wildfires: 4 404 kton CH₄.yr⁻¹

AFRICAN ANTHROPOGENIC N₂O EMISSIONS

- African total anthropogenic N_2O emissions between mean 2000-2009 and 2010-2019 mean increased from 382 Mt CO_2 eq. to 461 Mt CO_2 eq. (+ 20.8%).
- Slightly bigger increase than for the previous decade (+ 19.5%).

N₂O PRIMAP VS. ATMOSPHERIC INVERSIONS (TOTAL FLUX)

- N₂O TD increase trend consistent but always much higher than BU estimates.
- Importance to separate natural N₂O emissions from total TD estimates.
- Even if withdrawing reconstructed N₂O natural estimates, inversions > BU values, Ciais et al. 2022.

VERIFY

SYNTHESIS FOR THE THREE MAIN GHG

Differences between CO₂ GCP and PRIMAP get smaller with time.

CONCLUSION

- Africa as a continent 5th worldwide emitter regarding fossil CO₂.
- African quickly growing population and industrial potential => huge future impact on climate change.
 - Depending on pathways: between 10% 18% of global emissions in 2050.
- But monitoring featured with high spread among different methods: uncertainties.
 - Most of African national pledges < level of disagreements between methods.
- Discrepancies for all scientific independent methods to date => still an interesting result.

- Calls for investment in monitoring tools and research funding.
 - Should be done rapidly to change the game and enable a reliable verification.

Thank you for your attention.

