VERIFY General Assembly PhD thesis paper - Mounia MOSTEFAOUI supervised by Hervé Le Treut with Philippe Ciais, Philippe Peylin and Matt McGrath May 9th-11th, 2022 Synthesis of GHG trends over the last three decades across Africa ### Summary - Fossil CO₂ emissions - LULUCF CO₂ emissions and removals - CH₄ anthropogenic fluxes - N₂O total emissions - GHG synthesis ### **RESEARCH QUESTIONS** - What are the current GHG budgets over Africa from different sources? - What are the differences between those estimates? - What are the trends? ### **M**ETHODS AND DATASETS #### Map of the 6 groups of African emissions - Groups by geographical and eco-climatic areas. - South Africa specific. ### METHODS AND DATASETS - LIST OF BU AND TD METHODS | Dataset type/name | Method | CO ₂ | CH ₄ | N ₂ O | Spatial resolution (degrees) | Optimization | Time period covered in the present work | |--|--------|-----------------|-----------------|------------------|---|---------------------------|--| | | | | | | Inversions | | | | CAMS (GCB 2019) | TD | × | | | Global:
3.75°×1.875° | Variational | 2000-2018 | | CarbonTracker
Europe (CTE)
(GCB 2019) | TD | × | | | Global : 3°× 2°
Regional: 1°× 1° | Ensemble
Kalman filter | 2000-2018 | | Jena CarboScope | TD | × | | | Global: 4°× 5° | Conjugate
gradient | 2000-2018 | | Global Methane
Budget ensemble
(*see 22 products details in
the supplementary table
ST1) | TD | | × | | from 1° × 1 ° to
6° × 4° | | 2000-2017* (*variations from 2003-2015, 2000-2015, 2010-2017: see detailed period coverage for each dataset in the supplementary section.) | | PyVAR | TD | | | × | | | 1998-2017 | | TOMCAT-
INVICAT | TD | | | × | 5.6° × 5.6° | 4DVAR | 1998-2015 | | MIROC4 -
ACTM
(JAMSTEC) | TD | | | × | | Bayesian
statistics | 1998-2016 | | DGVMs | | | | | | | | | TRENDYv9* (*see supplementary table for the 14 products) | BU | × | | | 0.5°× 0.5° (land
surface) or 1° x 1° | | 1990-2019 | | Other BU inventories | | | | | | | | | PRIMAP-hist | BU | × | × | × | | | 1990-2019 | | GCP (CDIAC) | BU | × | | | 0.1°× 0.1° | | 1990-2019 | | UNFCCC | BU | × | | | | | 1990-2015 | | GFEDv4 | BU | | × | | 0.25° × 0.25° | | 1997–2016 | ### **M**ETHODS AND DATASETS ## NUMBER OF NEW AVAILABLE UPDATED NATIONAL COMMUNICATIONS FOR CO2 LULUCF PER YEAR PER AFRICAN GROUPS - Non-Annex I <=> reports not required every year. - Some years with numerous updates, other sparse. ### MAPS OF FOSSIL CO₂ ANTHROPOGENIC EMISSIONS FOR AFRICAN COUNTRIES Mostefaoui et al., in prep. South Africa Lesotho 22.57 0.76 MAPS OF THE ANTHROPOGENIC CH₄ AND N₂O EMISSIONS FOR AFRICAN COUNTRIES 8 Mostefaoui et al., in prep. South Africa Lesotho ### AFRICAN FOSSIL CO₂ EMISSIONS Synthesis of African mean anthropogenic fossil CO₂ emissions (CDIAC) over three decades. Contribution of each sector to the change. Total Africa CO₂ emissions by sector - GCP Rapid increase of fossil CO₂ emissions in Africa that doubled since 1990. Mostefaoui et al., in prep. • Fossil CO_2 in Africa are dominated by an increase of **coal** emissions for the decennial 1990-98 compared to 1999-2008 (+9.4%) and by **oil** for the decennial 1999-2008 compared to 2008-2017 (+16.4%). # VERIFY ### MAP OF AFRICAN LULUCF CO₂ EMISSIONS AND REMOVALS - Most countries are sinks, except 10. - Biggest sink in Central Africa. - 2006 IPCC GL about "managed land" may differ. ### CO₂ LULUCF EMISSIONS: UNFCCC vs. DGVMs AND TD METHODS Mostefaoui et al., in prep #### Mean of overlapping time period (2000-2018) : - Mean GCP inversions: + 0.27 Gt CO_2 e.yr⁻¹ (min: -0.8 Gt CO_2 e.yr⁻¹; max: 1.3 Gt CO_2 e.yr⁻¹) - Mean Trendy v9: 0.29 Gt CO₂ e.yr⁻¹ (min: 2 Gt CO₂ e.yr⁻¹; max: 2.1 Gt CO₂ e.yr⁻¹) - Mean UNFCCC: 2.71 Gt CO₂ e.yr⁻¹ ### **CH**₄ ANTHROPOGENIC FLUXES Emissions increase from 2001-2009 to 2010-2018 : Mostefaoui et al., in prep. 1116 Mt CO₂ eq. -> 1282 Mt CO₂ eq. **VERIFY** - All sectors (except IPPU) contribute to the + 14.8% increase. - Mainly from **Agriculture**: 433 Mt CO_2 eq. -> 440 Mt CO_2 eq. (+7.9% of the increase) and Waste (+5.8% of the increase). - Regions shifts from 2001-2009 to 2010-2018 - 2 main contributors: Northern Africa + Sub Sahelian western Africa - African shift: Energy -> Agriculture as main emitting sector in 30 years => due to North Africa trend mainly. 12 ## VERIFY ### Anthropogenic CH₄ TD vs BU estimates - BU method (PRIMAP) & 2TD global inversions with withdrawal of wildfire emissions (GFEDv4). Mostefaoui et al., in prep - Mean of overlapping time period (2010-2017) : - Mean GOSAT inversions: 25 627 kton CH_4 .yr⁻¹ (min: 15 359 kton CH_4 .yr⁻¹; max: 32 886 kton CH_4 .yr⁻¹) - Mean Surface: 28 254 kton CH_4 .yr⁻¹ (min: 13 962 kton CH_4 .yr⁻¹; max: 34 339 kton CH_4 .yr⁻¹) - Mean PRIMAP-hist: 49 728 kton CH₄.yr⁻¹ - Mean wetlands: 33 075 kton CH₄.yr⁻¹ (min: 19 231 kton CH₄.yr⁻¹; max: 37 676 kton CH₄.yr⁻¹) - Mean wildfires: 4 404 kton CH₄.yr⁻¹ ### AFRICAN ANTHROPOGENIC N₂O EMISSIONS - African total anthropogenic N_2O emissions between mean 2000-2009 and 2010-2019 mean increased from 382 Mt CO_2 eq. to 461 Mt CO_2 eq. (+ 20.8%). - Slightly bigger increase than for the previous decade (+ 19.5%). ### N₂O PRIMAP VS. ATMOSPHERIC INVERSIONS (TOTAL FLUX) - N₂O TD increase trend consistent but always much higher than BU estimates. - Importance to separate natural N₂O emissions from total TD estimates. - Even if withdrawing reconstructed N₂O natural estimates, inversions > BU values, Ciais et al. 2022. # VERIFY #### SYNTHESIS FOR THE THREE MAIN GHG Differences between CO₂ GCP and PRIMAP get smaller with time. ### **CONCLUSION** - Africa as a continent 5th worldwide emitter regarding fossil CO₂. - African quickly growing population and industrial potential => huge future impact on climate change. - Depending on pathways: between 10% 18% of global emissions in 2050. - But monitoring featured with high spread among different methods: uncertainties. - Most of African national pledges < level of disagreements between methods. - Discrepancies for all scientific independent methods to date => still an interesting result. - Calls for investment in monitoring tools and research funding. - Should be done rapidly to change the game and enable a reliable verification. ### Thank you for your attention.