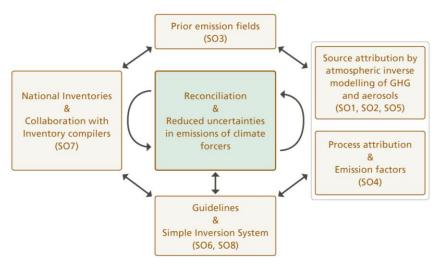
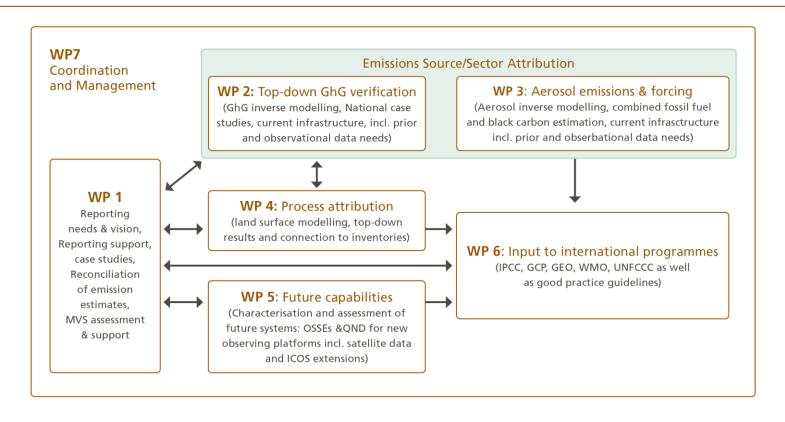
AVENGERS

Attributing and Verifying European and National Greenhouse gas and aerosol Emissions and Reconciliation with Statistical bottom-up estimates


Part. No.	Participant organisation name	Country
1	LUNDS UNIVERSITET	Sweden
Coordinator	(ULUND)	
2	THE INVERSION LAB (iLab)	Germany
3	ISPRA	Italy
4	RIVM	The Netherlands
5	UNIVERSITAET HEIDELBERG (UHEI)	Germany
6	CMCC	Italy

7	TNO	The Netherlands
8	ICOS ERIC	Finland
9	UMWELTBUNDESAMT (UBA)	Germany
10	SVERIGES LANTBRUKS- UNIVERSITET (SLU)	Sweden
11	EMPA	Switzerland
12	SRON	The Netherlands
13 Co- Coordinator	STICHTING VU (VUA)	The Netherlands


Advisory Board: M. Dowell (JRC), P. Friedlingstein (U Exeter) & S. Mikaloff-Fletcher (NIWA)

Objective

To reconcile reported GHG emissions with independent information from atmospheric observations using top-down methods and process-based models, aiming at reducing the most important uncertainties of national emission inventories

Project Structure

Focus regions (case studies)

- AFOLU sector
 - Forestry: Sweden
 - Agricultural land use: Italy & The Netherlands
- Germany: largest economy in EU, UBA partner
- Switzerland: front-runner of top-down aided emission reporting
- EU+UK: GhG and aerosol (pre-cursor) emissions of SO₂, OC (organic carbon), and BC (black carbon) and their uncertain

Some science highlights...

- Multi-tracer atmospheric inversion systems for GHG and aerosol emissions estimation
 - Co-emitted species (NO₂, 14 CO₂, δ 13C, δ D, alkanes)
 - Joint Black Carbon-CO₂ inversions
- · Coupled fossil fuel carbon cycle data assimilation
- Evaluation of future infrastructures: OSSEs and QND studies (e.g. PRISMA, EnMAP, CO2Imager, CO2M, ICOS extension)
- Emission factor quantification for GHG flux estimation in the AFOLU sector using process-based DGVMs (ORCHIDEE, LPJ-GUESS)
- Comparison of GHG and aerosol radiative forcing

Name	Model	DA method	Application	Reference
CCFFDAS	TM3/CMAQ	4D-VAR	CO_2	Kaminski et al. (2022)
ICON-ART-CTDAS*	ICON	EnKF	CO ₂ , CH ₄ , N ₂ O	Schröter et al. (2018)
LOTOS-Euros	LOTOS-Euros	4D-VAR, EnKF	CH ₄ , N ₂ O [#] , aerosols	Jin et al. (2017)
LUMIA	TM5/Flexpart	4D-VAR	CO ₂ , CH ₄ , aerosols & BC [#]	Monteil and Scholze, (2021)
WRF-CTDAS*	WRF-Chem	EnKF	CO ₂ , CH ₄ , N ₂ O [#]	Dekker et al. (2019)
TRACE	WRF-Chem	EnKF	CO_2	Chen et al. (2019)

Expected results (some highlights...)

- **Good practice guidelines** on how top-down emission estimation systems can support GHG inventories and the Global Stocktake.
- A Flexible Inversion Tool for Inventory Compiler for demonstrating the strengths and weaknesses in estimating GHG emissions, made available to national inventory compilers incl training events.
- Observation-based estimates of GHG (CO₂, CH₄, N₂O) and aerosol emissions and their uncertainties for European countries (with a specific focus on Germany, The Netherlands, Sweden and Switzerland such that they can be used as input in the respective GHG inventories).
- Improved estimates of uncertain emission factors used in the inventories, based on process modelling in ORCHIDEE and LPJ-GUESS of Sweden and Italy for the AFOLU sector.
- Estimates of the **climate impact of national emissions in terms of radiative forcing** taking into account the **radiative impact of aerosols and GHGs**.
- An evaluation of future observing systems (both satellite and in-situ) in terms of their potential to further reduce uncertainties in the estimated GHG and aerosol emissions and corresponding guidelines on the design of the networks.