EYE-CLIMA

Verifying Emissions of Climate Forcers

Rona Thompson, Andreas Stohl, Philippe Peylin, Philippe Ciais, Tuula Aalto, Hartmut Boesch, Dmitry Shchepaschenko, Antoine Berchet, Jean-Pierre Chang, Wilfried Winiwarter, Glen Peters and Maria Kanakidou

Project Objective

Address the need for independent verification of NGHGIs by developing TD methods to a level of readiness where they can be used to determine emissions at national and sub-national scale and incorporated into NGHGIs

Climate forcers

- Most important gases contributing to warming are CO₂, CH₄, N₂O, and F-gases
- Most important aerosol contributing to warming is black carbon (equivalent to that from N₂O but with very large uncertainty)

@ • Peters_Glen • Constructed from AR6 WGI Figure SPM.2c

Focus on most uncertain species and sectors

CO₂

- LULUCF 25% of pledged emission reductions in Paris agreements but large uncertainty
- Not covering fossil fuel emissions (focus of CoCO2)
- CH₄
 - Energy: 62% total GHG uncertainty
 - Agriculture: 24% total GHG uncertainty
 - Waste: 76% total GHG uncertainty
- N₂O
 - Agriculture: 74% total GHG uncertainty

F-gas species

- Will cover 6 species selected based on GWP and trends in emissions
- HFC species covered under Kigali amendment to Montreal protocol
- EU adopted F-gas regulation to reduce F-gas emissions 66% by 2030 relative to 2014 levels

Project Structure

- Work packages organised around methodology
- Four technical WPs and one outreach WP

Research focus: CH₄ detection from space

- Focus on TROPOMI, PRISMA and Sentinel-2 (S2) missions – detect major emitters so only limited number of observable sources in Europe
- 2-step machine learning approach to identify plumes and quantify emissions
- Exploration of data from new missions, MethaneSAT and CarbonMapper, and commercial satellites, Worldview-3 (WV-3) and GHGSat

XCH4 vertical column [molecules cm-2]

Research focus: CO₂ LULUCF

- Satellite observations of L-VOD from SMOS to derive above ground biomass (AGB) and its change from 2010
- L-VOD linearly related to AG carbon density using maps of forest carbon (at low frequency)
- Atmospheric inversions for landbiosphere fluxes, separation of manage versus unmanaged fluxes, correction for lateral carbon flows (crop harvest, rivers)
- Comparison of estimates from L-VOD and inversions

Research focus: Black Carbon

- Aim: better quantification of sources, aging and thus radiative forcing of BC
- Apportionment of BC measurements (from Aethalometers) into 2 source categories: i) traffic and power-plants, and ii) residential and biomass burning
- Atmospheric inversions:
 - European-scale: using FLEXPART with ensemble of scavenging parameters to determine uncertainty
 - Global-scale: using TM5-MP with aerosol microphysics and the CarbonTracker data assimilation shell
- Observations:
 - Harmonized observations from ACTRIS and EMEP (Europe) and NOAA Federated Aerosol Network (FAN) (Global)

SOURCES OF BLACK CARBON

Collaboration with NGHGI agencies

- Pilot projects on specific species and sectors
 - Agricultural N₂O emissions from inversions and NGHGIs in Germany and France (CITEPA, TI)
 - CH₄ fluxes from drained, restored and natural peatlands in Finland (FMI, Statistics Finland)
 - CH₄ fluxes from agriculture and waste in France, Germany and Finland (CITPEA, TI, Statistics Finland)
 - CO₂ fluxes from LULUCF sector in France (CITPEA)
- Preparation of guidelines on observation-based NGHGI verification in collaboration with NGHGI agencies to be published through IG3IS

Overall concept for verification of NGHGIs

Guidelines for observationbased verification published via IG³IS

Partners and practical information

Coordinator: Norsk Institutt for Luftforskning (NILU)	
Partner Institutes:	
University of Vienna	Finnish Meteorological Institute
CICERO Senter for Klimaforskning	CITEPA
University of Leicester	ETHZ
University of Crete	WMO
Karlsruhe Institut für Technologie	Thühnen Institute
CNRS	CEA
ICOS	EMPA

- Project over 4 years potential start date late Autumn 2022
- Total budget of 5 M€

